

ARSET

Applied Remote Sensing Training http://arset.gsfc.nasa.gov

@NASAARSET

NASA Trace Gas Products for Air Quality Applications

Pawan Gupta & ARSET Team

Satellite Remote Sensing of Air Quality: Data, Tools, and Applications

Tuesday, May 23, 2017 – Friday, May 26, 2017 Indian Institute of Tropical Meteorology, Pune, India

Satellite Remote Sensing of Trace Gases for Air Quality in a Nutshell

Surface Monitoring

- Compared to aerosol instrumentation, satellite trace gas instrumentation is generally **not as sensitive** to surface pollution
- -Exceptions: nitrogen dioxide and sulfur dioxide

Emissions Inventories and Modeling

 Trace gas observations from space have been useful for constraining emissions inventories

Vertical Profile Information in the Free Troposphere

 Also available for some products (e.g. CO) and derived using the pressure dependence of spectral bands

Satellite Remote Sensing of Trace Gases for Air Quality in a Nutshell

Nitrogen Dioxide

- Good sensitivity in the planetary boundary layer (PBL)
- -Fire smoke, industrial and transportation sources, stationary sources, top-down emissions inventories

Sulfur Dioxide, Ozone, and Formaldehyde

- -Limited sensitivity in the PBL
- Sensitive to large point sources, such as electrical generating units and volcanoes

Satellite Remote Sensing of Trace Gases for Air Quality in a Nutshell

- Carbon Monoxide
 - –Good mid-tropospheric sensitivity
 - Useful for monitoring long-range transport of smoke
- Carbon Dioxide and Methane
 - -Low spatial resolution
 - -Captures global trends

Measuring Trace Gases from Space

- Detect backscattered and/or emitted thermal radiation
- We know the distinct absorption spectra of each trace gas
- We can identify a "fingerprint" for each atmospheric constituent
- Retrieval algorithms (a model) infer physical quantities such as number density, partial pressure, and column amount

How Satellites Measure Trace Gases

- Trace gases use the signature of gas absorption
- All satellite remote sensing measurements of the troposphere are based on the use of electromagnetic radiation and its interaction with constituents in the atmosphere

Satellite Measurements Take Advantage of Distinct Absorption Spectra

Vertical Distribution of O₃, SO₂, and NO₂

- Very little information can be obtained on the vertical distribution of trace gases
- Measurements at different wavelengths (technique of combining UV, visible, and IR measurements) provide some vertical information
 - –penetration depth of photons increases with increasing wavelengths
 - –Example: volcanic plumesof SO₂

Hyperspectral Instruments Satellite UV-Visible Spectrometers

Instrument	Satellite	Wavelength
GOME	ERS-2	240 – 800 nm
SCIAMACHY	Envisat	240 – 1750 nm
OMI	EOS-Aura	270 – 500 nm
GOME-2	Metop-A	240 – 800 nm

Data Formats & Resolutions

Data Level	Description
Level 0	Raw data at full instrument resolution
Level 1A	Raw data, including radiometric and geometric calibration coefficients and geo-referencing parameters (e.g. platform ephemeris) computed and appended, but not applied to Level 0 data
Level 1B	Level 1A data that has been processed to sensor units (not all instruments have Level 1B source data)
Level 2	Derived geophysical variables at the same resolution and location as Level 1 source data
Level 2G & 3	Variables mapped on uniform space-time grid scales, usually with some completeness and consistency
Level 4	Model output or results from analyses of lower level data (e.g. variables derived from multiple measurements)

Spatial Resolution: Trace Gases

- Spatial resolution of current satellite instruments (10s of km diameter)
 - good enough to map tropospheric concentration fields on local to regional scales
 - -fine enough to resolve individual power plants and large cities
- For species with short atmospheric lifetimes (e.g. NO₂), averaging over larger satellite pixels can lead to significant dilution of signals from point sources, complicating quantitative analysis and separation of emission sources
- For quantitative analysis: Level 2 and high resolution gridded Level 3 data are optimal

Source: Richter, 2010

Advantages of Using Level 3 vs. Level 2 Data

- Uniform grid
- One file per day
- Smaller sized files
- Quality flags and filtering criteria have been applied

Perspective...

Quantification of Gas Abundances

Satellite Tracer	Units
OMI O ₃ , SO ₂	Dobson Units
OMI NO ₂ , Column Amounts (also AIRS and MOPITT CO)	Molecules/cm ²
AIRS and MOPITT CO Vertical Levels	Volume Mixing Ratio

Ozone Measuring Instrument (OMI)

- Launched July 15, 2004
- NASA EOS Aura Satellite
- Nadir-viewing UV/Visible
 - -270 310 nm at 0.6 nm
 - -310 500 nm at 0.45 nm
- 1:40 p.m. equatorial crossing time
- 13x24 km² at nadir
- Daily global coverage

- Products
 - -Total Column O₃
 - -Tropospheric Column O₃ (experimental but not applicable in the midlatitudes)
 - Aerosol optical depth (in UV)
 - -Column Formaldehyde
 - -Column NO₂
 - -Column SO₂

Data Granule

- Product File
 - –covers sunlit portion of the orbit with an approx. 2,600 km wide swath
 - -contains 60 binned pixels or scenes per viewing line
- 14 or 15 granules are produced daily, providing fully contiguous coverage of the globe

Important Information Regarding OMI

- Almost 50% data loss since 2008 (row anomaly effect)
- Affects O₃, SO₂, and to some extent NO₂ OMI products

OMI Ozone in the Troposphere

- OMI is not sensitive to ozone near the surface
- There are tropospheric ozone products in development
 - -they currently cannot be used for air quality monitoring
- Retrieval of boundary layer O₃ from satellite remote sensing remains a daunting task

OMI Formaldehyde (CH₂O)

- Data is reliable for 2004-2009 only
- Data re-processing is planned to account for the growing background noise and row anomalies

HCHO is a proxy for isoprene emissions

Source: Martin, Randall. Satellite remote sensing of surface air quality. Atmospheric Environment 42(34), 7823-7843, 2008.

OMI SO₂ in the Boundary Layer

- Dataset Short Name = OMSO2e
 - -Product Level: 3
 - -Begin: October 1, 2004
 - Resolution: 0.25° lon x0.25°lat
- Cloud-screened best measurement
 - -Frequency: daily
 - -Granule (File) Coverage:15 orbits
 - -File Size (approx): 5 mb

- Contains best pixel data, screened for OMI row anomaly, clouds, and other data quality flags
- Data: http://disc.sci.gsfc.

 nasa.gov/Aura/data holdings/OMI/omso2e_v00
 3.shtml

Perspective: What is Considered High SO₂?

2005-2010 Mean SO₂ Over Canadian Oil Sands

McLinden, C. A., et al. (2012), Air quality over the Canadian oil sands: A first assessment using satellite observations, Geophys. Res. Lett., 39, L04804, doi:10.1029/2011GL050273.

OMI SO₂ from Kasatochi Volcano August 8-12, 2008

Perspective: What is considered high SO₂?

U.S. Source #1: Bowen Coal Power Plant, Georgia (3500 MW), SO₂ Emissions: 170 kT in 2006

"In **2008**, the mammoth construction program yielded the first scrubbers, sophisticated equipment that will reduce our overall systems emissions by as much as 90 percent"

Georgia Power website

Source: V. Fioletov, et al., 2011

OMI NO₂

Nitrogen Dioxide (NO₂)

- NO₂ is produced when coal and gasoline are burned
 - -comes out of tailpipes and smokestacks
- Unhealthy to breathe and correlated with morbidity and mortality
 - likely since it is emitted alongside air toxins & is a necessary ingredient for ozone formation

Source: Duncan, B.N. et al. (2016)

OMI Detects NO₂ Increases from ONG Activities 2005-2014

North Dakota

Suomi NPP VIIRS Lights at Night

Texas

National Aeronautics and Space Administration

Satellite and AQS NO2 Trends

Estimating Satellite Based Surface NO₂

Scattering by Earth surface and atmosphere

$$\mathbf{S}_{\mathrm{O}} = \mathbf{\Omega}_{\mathrm{O}} \left[\frac{\mathbf{S}_{\mathrm{M}}}{\mathbf{\Omega}_{\mathrm{M}}} \right]$$

Model Profile

S → Surface Concentration

 $\Omega \rightarrow$ Tropospheric column

Ground-Level Afternoon NO₂ Inferred from OMI for 2005

- Also available at: http://fizz.phys.dal.ca/~atmos/
- Note: this is a research product and not an official NASA product

Source: Lok Lamsal

Carbon Monoxide

- Top Column Density
- Also sensitive to vertical distribution of CO
- Greatest sensitivity to CO variability is at 500 mb

 Mixing ratio can be larger away from the source

Current CO Sensors

AIRS: Atmospheric Infrared Sounder

MOPITT: Measurements of Pollution in The Troposphere

IASI: Infrared Atmospheric Sounding Interferometer

Atmospheric Infrared Sounder (AIRS)

http://airs.jpl.nasa.gov/

- Operational since Sep 2002
- Nadir sounding instrument
- Pixel size
 - -14 km at nadir
 - -41x21 km edges
- Swath Width: 1,650 km
- Equator Crossing Times
 - -1:30 (ascending)
 - -13:30 (descending)
- Column Measurements in molecules/cm³

- Profile Measurements:
 - -9 vertical layers
 - -901.866 hPa 0.16 hPa
- Data source: Level 2 pixel and Level 3 gridded
 1° x1° resolution

AIRS

- Has excellent global coverage with 'minor' gaps – particularly over CONUS
- Can easily track biomass burning plumes
 - –AIRS swath width is~1650 km where MOPITT is640 km
 - Twice daily coverage with AIRS (daytime and nighttime)
- Ascending Orbit = Daytime
- Descending Orbit = Nighttime

AIRS vs. MOPPITT CO

AIRS Level 2 from NRT Website

AIRS Level 3, 1° x1° from

MOPPITT Level 3, 1° x1°

Long Range Transport of CO

OMI SO₂ Gridded Product Summary

SO ₂ Product	Level	Data Short Name	Sensitivity	Use
PBL SO ²	L3 0.25° x0.2 5°	OMSO2e	0.6 km	Fossil fuel, industry
TRL SO ²	L2G 0.25° x0.2 5°	OMSO2G	3 km	Industry outflow
TRM SO ²	L2G 0.25° x0.2 5°	OMSO2G	5 km	Optimized for volcanic degassing
CayeatoUnl screened fo	L2G ikeչthe _x QMS r ₅ clouds, sz	SORSÓÞest a, quality fl	, prթվաct, ags, and ro	LEXO OSANO PROPERTO LE VINTO PROPINS DE LA P

Level 2 Pixel (Footprint) Size at Nadir

NASA	AIRS	14 x 14 km		
NASA	MOPITT	22 x 22km		
NASA	TES	■ 8.3 km 5.3 km		
esa	SCIAMACHY	30 km 60 km		
esa	IASI	12 x 12 km		

	MOPITT	AIRS	TES	IASI	SCIAMACY
Product / Pixel size	22 x 22 km	14 x 14 km	5.3 x 8.3 km 100 m between pixels	50 km 12 x 12 km	30 x 60 km
Swath Width	650 km	1,650 km	N/A	2,200 km	1,000 km
Global Coverage / Repeat Cycle	3 day composite for global coverage	2x per day (day & night)	16 day repeat cycle	2x per day (day & night)	6 days
Overpass Time	10:30	13:30	2:30, 14:30	9:30, 21:30	10:00

	MOPITT	AIRS	TES	IASI	SCIAMACY
Product Resolution	L3 1° Grid	L3 1° Grid	L3 5 x 8 km	NO L3 Product	L3 0.5° Grid
Products Available	L2 L3, Daily, Monthly	L2 granule L3	L2 granule	L2 NOAA & ESA	2B-swath 3-global
Vertical Sensitivity	mid & lower troposphere	mid tropo- sphere	mid & lower troposphere	mid tropo- sphere	total column only
Product Accuracy	TIR: 10% Near Surface: 30%	10-20%	20%	<10%	10-20%

	MOPITT	AIRS	TES	IASI	SCIAMACY
Notes	• TIR and NIR channels	 QA flags in L2 and L3 Next product will include near surface 	 Report data for clouds 0-25% Simultaneous trace gas 	 250 km sampli ng ESA Should averag e to 4 x 5° 	

	MOPITT	AIRS	TES	IASI	SCIAMACHY
Product/pixel size	22 x 22 Km	14 x 14 km	5.3 x 8.3 KM 100 M between pixels	50 KM 12 x 12 KM	30 x 60KM
Swath width	650 KM	1650 KM	N/A	2200 KM	1000 KM
Global Coverage/ Repeat Cycle	3 Days Composite for global coverage	2X per day (day and night)	16 days Repeat Cycle	2X per day (day and night)	6 Days
Overpass time	10:30 AM	13:30	2:30 AM / PM	9:30 AM/PM	10:00 AM
Product Resolution	L3 1 Degree grid	L3 1 Degree grid	L3 5x8km	NO L3 Product	L3 0.5 Degree grid
Products available	L2 L3 Daily, Monthly	Level 2 (granule) Level 3	L2 granule	L2 NOAA and ESA	2B - swath 3 - global
Vertical sensitivity	Mid and lower troposphere	Mid- Troposphere	mid and lower troposphere	mid troposphere	Total column only
Product accuracy	TIR - 10% Near Surface 30%	10 - 20%	20%	< 10%	10 - 20%
Other notes	TIR and NIR Channels	QA flags in L2 and L3	Report data for clouds 0 -25% Simultaneous trace gas	250 KM sampling ESA Should avg. to 4x5 deg.	